Regulation of KCa-channel activity by cyclic ADP-ribose and ADP-ribose in coronary arterial smooth muscle.
نویسندگان
چکیده
The enzymatic pathway responsible for the production and metabolism of cyclic ADP-ribose (cADP-R) in small bovine coronary arteries was characterized, and the role of cADP-R and ADP-ribose (ADP-R) in the regulation of the activity of large-conductance Ca2+-activated K+(KCa) channels was determined in vascular smooth muscle cells (SMC) prepared from these vessels. We found that cADP-R and ADP-R were produced when the coronary arterial homogenates were incubated with 1 mM β-NAD. The time course of the enzyme reactions showed that the maximal conversion rate (1.37 ± 0.03 nmol ⋅ min-1 ⋅ mg protein-1) of β-NAD to cADP-R was reached after 3 min of incubation. As incubation time was prolonged, the production of ADP-R was increased to a maximal rate of 3.66 ± 0.03 nmol ⋅ min-1 ⋅ mg protein-1, whereas cADP-R production decreased. Incubation of the homogenate with cADP-R produced a time-dependent increase in the synthesis of ADP-R. Comparison of coronary arterial microsomes with cytosols shows that the production of both cADP-R and ADP-R in microsomes was significantly greater. In excised inside-out membrane patches of single coronary SMC, the KCa channels were activated when β-NAD, the precursor for both cADP-R and ADP-R, was applied to the internal surface. This effect of β-NAD may be associated with the production of ADP-R, because the KCa-channel activity was increased by ADP-R in a concentration-dependent manner. The open-state probability of the KCa channels increased from a control level of 0.08 ± 0.03 to 0.17 ± 0.05 even at the lowest ADP-R concentration (0.1 μM) studied. However, cADP-R reduced the KCa-channel activity, and the threshold concentration of cADP-R that decreased the average channel activity of the KCa channels was 1 μM. These results provide evidence that cADP-R is produced and metabolized in the coronary arterial smooth muscle and that a cADP-R/ADP-R pathway participates in the control of the KCa-channel activity in vascular SMC.
منابع مشابه
Role of ADP-ribose in 11,12-EET-induced activation of K(Ca) channels in coronary arterial smooth muscle cells.
We recently reported that cADP-ribose (cADPR) and ADP-ribose (ADPR) play an important role in the regulation of the Ca(2+)-activated K(+) (K(Ca)) channel activity in coronary arterial smooth muscle cells (CASMCs). The present study determined whether these novel signaling nucleotides participate in 11,12-epoxyeicosatrienoic acid (11,12-EET)-induced activation of the K(Ca) channels in CASMCs. HP...
متن کاملEnhanced production and action of cyclic ADP-ribose during oxidative stress in small bovine coronary arterial smooth muscle.
Recent studies in our lab and by others have indicated that cyclic ADP-ribose (cADPR) as a novel second messenger is importantly involved in vasomotor response in various vascular beds. However, the mechanism regulating cADPR production and actions remains poorly understood. The present study determined whether changes in redox status influence the production and action of cADPR in coronary art...
متن کاملCyclic ADP-ribose contributes to contraction and Ca2+ release by M1 muscarinic receptor activation in coronary arterial smooth muscle.
The present study determined the role of cyclic ADP-ribose (cADPR) in mediating vasoconstriction and Ca(2+) release in response to the activation of muscarinic receptors. Endothelium-denuded small bovine coronary arteries were microperfused under transmural pressure of 60 mm Hg. Both acetylcholine (ACh; 1 nmol/L to 1 micromol/L) and oxotremorine (OXO; 2.5-80 micromol/L) produced a concentration...
متن کاملAltered CD38/Cyclic ADP-Ribose Signaling Contributes to the Asthmatic Phenotype
CD38 is a transmembrane glycoprotein expressed in airway smooth muscle cells. The enzymatic activity of CD38 generates cyclic ADP-ribose from β-NAD. Cyclic ADP-ribose mobilizes intracellular calcium during activation of airway smooth muscle cells by G-protein-coupled receptors through activation of ryanodine receptor channels in the sarcoplasmic reticulum. Inflammatory cytokines that are implic...
متن کاملNitric oxide inhibits Ca(2+) mobilization through cADP-ribose signaling in coronary arterial smooth muscle cells.
The present study was designed to determine whether the cADP-ribose-mediated Ca(2+) signaling is involved in the inhibitory effect of nitric oxide (NO) on intracellular Ca(2+) mobilization. With the use of fluorescent microscopic spectrometry, cADP-ribose-induced Ca(2+) release from sarcoplasmic reticulum (SR) of bovine coronary arterial smooth muscle cells (CASMCs) was determined. In the alpha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 275 3 شماره
صفحات -
تاریخ انتشار 1998